Purification and characterization of assimilatory nitrite reductase from Candida utilis.

نویسندگان

  • S Sengupta
  • M S Shaila
  • G R Rao
چکیده

Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of L-asparaginase Production by Candida utilis in a 13L Fermenter and its Purification

L- asparaginase enzyme is a renown enzyme due to its chemotherapeutic properties. This enzyme could also be employed in food processing technology. The present study aimed, optimizing the agitation and aeration rate in L-asparaginase production, using Candida utilis, ATCC 9950 in batch fermentation system. Beet molasses used as the carbohydrate source for enzyme production. A maximum asparagina...

متن کامل

Purification and properties of the assimilatory nitrite reductase from barley Hordeum vulgare leaves.

The assimilatory nitrite reductase (ferredoxin: nitrite oxidoreductase, EC 1.7.7.1) from barley (Hordeum vulgare L.) leaves has been purified over 1500-fold with a recovery of 30% and a specific activity of 84 mumol of nitrite reduced/min per mg of protein. The purification procedure includes (NH4)2SO4 fractionation, ion-exchange and molecular-sieve chromatographies and, finally, ferredoxin-Sep...

متن کامل

An enzymic analysis of NADPH production and consumption in Candida utilis.

Candida utilis CBS 621 was grown in chemostat cultures at D = 0.1 h-1 on glucose, xylose, gluconate, acetate, or ethanol as the growth-limiting substrate with ammonia or nitrate as the nitrogen source and analysed for NADPH-producing and NADPH-consuming enzyme activities. Nitrate and nitrite reductases were strictly NADPH-dependent. For all carbon sources, growth with nitrate resulted in elevat...

متن کامل

Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70.

Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. B...

متن کامل

Involvement of a B-type cytochrome in the assimilatory nitrate reductase of Neurospora crassa.

The enzyme systems which catalyze the reduction of nitrate to nitrite have generally been classified into two broad types: (a) assimilatory nitrate reductase, which is responsible for the first step in the reduction of nitrate for the ultimate biosynthesis of nitrogen-containing cell constituents (e.g., amino acids aind purines and pyrimidines), and (b) respiratory or dissimilatory nitrate redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 317 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996